Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
World J Microbiol Biotechnol ; 32(12): 207, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27807756

RESUMO

This study assessed the efficiency of Scheffersomyces amazonensis UFMG-CM-Y493T, cultured in xylose-supplemented medium (YPX) and rice hull hydrolysate (RHH), to convert xylose to xylitol under moderate and severe oxygen limitation. The highest xylitol yields of 0.75 and 1.04 g g-1 in YPX and RHH, respectively, were obtained under severe oxygen limitation. However, volumetric productivity in RHH was ninefold decrease than that in YPX medium. The xylose reductase (XR) and xylitol dehydrogenase (XDH) activities in the YPX cultures were strictly dependent on NADPH and NAD+ respectively, and were approximately 10% higher under severe oxygen limitation than under moderate oxygen limitation. This higher xylitol production observed under severe oxygen limitation can be attributed to the higher XR activity and shortage of the NAD+ needed by XDH. These results suggest that Sc. amazonensis UFMG-CM-Y493T is one of the greatest xylitol producers described to date and reveal its potential use in the biotechnological production of xylitol.


Assuntos
Debaryomyces/crescimento & desenvolvimento , Xilitol/biossíntese , Aldeído Redutase/metabolismo , Meios de Cultura/química , D-Xilulose Redutase/metabolismo , Debaryomyces/classificação , Debaryomyces/enzimologia , Fermentação , Proteínas Fúngicas/metabolismo , Microbiologia Industrial , NAD/metabolismo , NADP/metabolismo , Xilitol/metabolismo , Xilose/metabolismo
2.
Appl Biochem Biotechnol ; 180(6): 1141-1151, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27323768

RESUMO

In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.


Assuntos
Celulose/química , Celulose/farmacologia , Tamanho da Partícula , Saccharomycetales/metabolismo , Saccharum/química , Xilitol/biossíntese , Xilose/biossíntese , Fermentação/efeitos dos fármacos , Hidrólise , Saccharomycetales/efeitos dos fármacos
3.
Bioresour Technol ; 147: 449-455, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24012734

RESUMO

Debaryomyces hansenii is one of the most promising natural xylitol producers. As the conversion of xylitol to xylulose mediated by NAD(+) cofactor dependent xylitol dehydrogenase (XDH) reduces its xylitol yield, xylitol dehydrogenase gene (DhXDH)-disrupted mutant of D. hansenii having potential for xylose assimilating pathway stopping at xylitol, was used to study the effects of co-substrates, xylose and oxygen availability on xylitol production. Compared to low cell growth and xylitol production in cultivation medium containing xylose as the only substrate, XDH disrupted mutants grown on glycerol as co-substrate accumulated 2.5-fold increased xylitol concentration over those cells grown on glucose as co-substrate. The oxygen availability, in terms of volumetric oxygen transfer coefficient, kLa (23.86-87.96 h(-1)), affected both xylitol productivity and yield, though the effect is more pronounced on the former. The addition of extra xylose at different phases of xylitol fermentation did not enhance xylitol productivity under experimental conditions.


Assuntos
Engenharia Genética , Saccharomyces/metabolismo , Xilitol/biossíntese , D-Xilulose Redutase/genética , Saccharomyces/enzimologia , Saccharomyces/genética , Xilitol/metabolismo , Xilose/metabolismo
4.
Biotechnol Prog ; 28(6): 1457-65, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22961753

RESUMO

Realizing the importance of xylitol as a high-valued compound that serves as a sugar substitute, a new, one step thin layer chromatographic procedure for quick, reliable, and efficient determination of xylose and xylitol from their mixture was developed. Two hundred and twenty microorganisms from the laboratory stock cultures were screened for their ability to produce xylitol from D-xylose. Amongst these, an indigenous yeast isolate no.139 (SM-139) was selected and identified as Debaryomyces hansenii on the basis of morphological and biochemical characteristics and (26S) D1/D2 r DNA region sequencing. Debaryomyces hansenii produced 9.33 gL(-1) of xylitol in presence of 50.0 gL(-1) of xylose in 84 h at pH 5.5, 30°C, 200 rpm. In order to utilize even higher concentrations of xylose for maximum xylitol production, a xylose enrichment technique was developed. The strain of Debaryomyces hansenii was obtained through xylose enrichment technique in a statistically optimized medium containing 0.3% yeast extract, 0.2% peptone, 0.03% MgSO(4) .7H(2) O along with 1% methanol. The culture was inoculated with 6% inoculum and incubated at 30°C and 250 rpm. A yield of 0.6 gg(-1) was obtained with a xylitol volumetric productivity of 0.65 g/L h(-1) in the presence of 200 gL(-1) of xylose although up to 300 gL(-1) of xylose could be tolerated through batch fermentation. Through this technique, even higher concentrations of xylose as substrate could be potentially utilized for maximum xylitol production.


Assuntos
Debaryomyces/metabolismo , Xilitol/biossíntese , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Meios de Cultura , Fermentação , Filogenia , Xilose/metabolismo
5.
PLoS One ; 7(8): e43135, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22912807

RESUMO

BACKGROUND: This study is the first to investigate the Brazilian Amazonian Forest to identify new D-xylose-fermenting yeasts that might potentially be used in the production of ethanol from sugarcane bagasse hemicellulosic hydrolysates. METHODOLOGY/PRINCIPAL FINDINGS: A total of 224 yeast strains were isolated from rotting wood samples collected in two Amazonian forest reserve sites. These samples were cultured in yeast nitrogen base (YNB)-D-xylose or YNB-xylan media. Candida tropicalis, Asterotremella humicola, Candida boidinii and Debaryomyces hansenii were the most frequently isolated yeasts. Among D-xylose-fermenting yeasts, six strains of Spathaspora passalidarum, two of Scheffersomyces stipitis, and representatives of five new species were identified. The new species included Candida amazonensis of the Scheffersomyces clade and Spathaspora sp. 1, Spathaspora sp. 2, Spathaspora sp. 3, and Candida sp. 1 of the Spathaspora clade. In fermentation assays using D-xylose (50 g/L) culture medium, S. passalidarum strains showed the highest ethanol yields (0.31 g/g to 0.37 g/g) and productivities (0.62 g/L · h to 0.75 g/L · h). Candida amazonensis exhibited a virtually complete D-xylose consumption and the highest xylitol yields (0.55 g/g to 0.59 g/g), with concentrations up to 25.2 g/L. The new Spathaspora species produced ethanol and/or xylitol in different concentrations as the main fermentation products. In sugarcane bagasse hemicellulosic fermentation assays, S. stipitis UFMG-XMD-15.2 generated the highest ethanol yield (0.34 g/g) and productivity (0.2 g/L · h), while the new species Spathaspora sp. 1 UFMG-XMD-16.2 and Spathaspora sp. 2 UFMG-XMD-23.2 were very good xylitol producers. CONCLUSIONS/SIGNIFICANCE: This study demonstrates the promise of using new D-xylose-fermenting yeast strains from the Brazilian Amazonian Forest for ethanol or xylitol production from sugarcane bagasse hemicellulosic hydrolysates.


Assuntos
Variação Genética , Árvores/microbiologia , Xilose/metabolismo , Leveduras/genética , Leveduras/metabolismo , Brasil , Celulose/metabolismo , Primers do DNA/genética , Etanol/metabolismo , Fermentação , Reação em Cadeia da Polimerase , Especificidade da Espécie , Xilitol/biossíntese
6.
Prep Biochem Biotechnol ; 42(1): 1-14, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22239704

RESUMO

Biosynthesis of xylitol using the yeast Debaryomyces hansenii NRRL Y-7426 was carried out using distilled grape marc (DGM) hemicellulosic hydrolysates directly concentrated by vacuum evaporation or after detoxification with activated charcoal. The effect of nutrient supplementation with vinasses, corn steep liquor (CSL) or commercial nutrients was explored. Using crude concentrated hemicellulosic hydrolysates, the maximum xylitol concentration, 11.3 g/L, was achieved after 172 hr (Q ( xylitol ) = 0.066 g/L-hr; Y ( xylitol ) (/SC) = 0.21 g/g); meanwhile, using detoxified concentrated hydrolysates, the concentration increased up to 19.7 g/L after 72 hr (Q ( xylitol ) = 0.274 g/L-hr; Y ( xylitol ) (/SC) = 0.38 g/g). On the other hand, using crude or detoxified hydrolysates, the xylose-to-xylitol bioconversion was strongly affected by the addition of nutrients, suggesting that these hydrolysates present essential nutrients favouring the growth of D. hansenii.


Assuntos
Meios de Cultura/química , Debaryomyces/metabolismo , Polissacarídeos/química , Vitis/microbiologia , Xilitol/biossíntese , Carvão Vegetal/química , Debaryomyces/química , Etanol/química , Fermentação , Alimentos , Hidrólise , Polissacarídeos/metabolismo , Vitis/química , Zea mays/química
7.
N Biotechnol ; 29(3): 421-7, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807126

RESUMO

This study develops a system for the efficient valorisation of hemicellulosic hydrolysates of vineshoot trimmings. By connecting two reactors of 2L and 10L, operational conditions were set up for the sequential production of lactic acid and xylitol in continuous fermentation, considering the dependence of the main metabolites and fermentation parameters on the dilution rate. In the first bioreactor, Lactobacillus rhamnosus consumed all the glucose to produce lactic acid at 31.5°C, with 150rpm and 1L of working volume as the optimal conditions. The residual sugars were employed for the xylose to xylitol bioconversion by Debaryomyces hansenii in the second bioreactor at 30°C, 250rpm and an air-flow rate of 2Lmin(-1). Several steady states were reached at flow rates (F) in the range of 0.54-5.33mLmin(-1), leading to dilution rates (D) ranging from 0.032 to 0.320h(-1) in Bioreactor 1 and from 0.006 to 0.064h(-1) in Bioreactor 2. The maximum volumetric lactic acid productivity (Q(P LA)=2.908gL(-1)h(-1)) was achieved under D=0.266h(-1) (F=4.44mLmin(-1)); meanwhile, the maximum production of xylitol (5.1gL(-1)), volumetric xylitol productivity (Q(P xylitol)=0.218gL(-1)h(-1)), volumetric rate of xylose consumption (Q(S xylose)=0.398gL(-1)h(-1)) and product yield (0.55gg(-1)) were achieved at an intermediate dilution rate of 0.043h(-1) (F=3.55mLmin(-1)). Under these conditions, ethanol, which was the main by-product of the fermentation, was produced in higher amounts (1.9gL(-1)). Finally, lactic acid and xylitol were effectively recovered by conventional procedures.


Assuntos
Reatores Biológicos/microbiologia , Debaryomyces/crescimento & desenvolvimento , Ácido Láctico/biossíntese , Lacticaseibacillus rhamnosus/crescimento & desenvolvimento , Polissacarídeos/metabolismo , Vitis/química , Xilitol/biossíntese , Hidrólise
8.
Bioprocess Biosyst Eng ; 34(7): 869-78, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21461772

RESUMO

A mathematical model describing the kinetics of the sequential production of lactic acid and xylitol from detoxified-concentrated vine trimming hemicellulosic hydrolysates by Lactobacillus rhamnosus and Debaryomyces hansenii, respectively, was developed from the basic principles of mass balance in two stages considering as main reactions: (1) glucose and xylose consumption by L. rhamnosus; and (2) xylitol and arabitol production by D. hansenii. The model allows to evaluate the yields and productivities under microaerobic and oxygen restricted conditions (in particular the effects caused by purging the oxygen with nitrogen), which were particularly important during the xylose to xylitol bioconversion by yeasts. The model was tested using experimental data obtained from detoxified-concentrated hemicellulosic hydrolysates, after CaCO3 addition in both types of fermentation processes, without purges (microaerobic conditions) or purging oxygen with nitrogen (oxygen-limited conditions) after sampling in order to reduce the oxygen dissolved. L. rhamnosus was removed by microfiltration before adding D. hansenii at the beginning of the second stage. Mass balance-based and logistic functions were successfully applied to develop the model of the system which properly predicts the consumption of sugars as well as the metabolites produced and yields. The dynamics of fermentation were also adequately described by the developed model.


Assuntos
Fermentação , Ácido Láctico/biossíntese , Modelos Biológicos , Polissacarídeos/química , Xilitol/biossíntese , Leveduras/metabolismo , Arabinose/metabolismo , Debaryomyces/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Hidrólise , Cinética , Lacticaseibacillus rhamnosus/metabolismo , Modelos Logísticos , Nitrogênio/metabolismo , Oxigênio/metabolismo , Plantas/metabolismo , Plantas/microbiologia , Polissacarídeos/metabolismo , Álcoois Açúcares/metabolismo , Gerenciamento de Resíduos/métodos , Resíduos , Xilose/metabolismo
9.
Bioresour Technol ; 102(3): 3304-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21067918

RESUMO

A thermotolerant yeast capable of fermenting xylose to xylitol at 40°C was isolated and identified as a strain of Debaryomyces hansenii by ITS sequencing. This paper reports the production of xylitol from D-xylose and sugarcane bagasse hemicellulose by free and Ca-alginate immobilized cells of D. hansenii. The efficiency of free and immobilized cells were compared for xylitol production from D-xylose and hemicellulose in batch culture at 40°C. The maximum xylitol produced by free cells was 68.6 g/L from 100 g/L of xylose, with a yield of 0.76 g/g and volumetric productivity 0.44 g/L/h. The yield of xylitol and volumetric productivity were 0.69 g/g and 0.28 g/L/h respectively from hemicellulosic hydrolysate of sugarcane bagasse after detoxification with activated charcoal and ion exchange resins. The Ca-alginate immobilized D. hansenii cells produced 73.8 g of xylitol from 100 g/L of xylose with a yield of 0.82 g/g and volumetric productivity of 0.46 g/L/h and were reused for five batches with steady bioconversion rates and yields.


Assuntos
Celulose/metabolismo , Polissacarídeos/metabolismo , Saccharomycetales/metabolismo , Saccharum/microbiologia , Xilitol/biossíntese , Xilose/biossíntese
10.
Bioresour Technol ; 101(7): 2379-88, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20005093

RESUMO

Vinasses coming from the five CBOs of Galicia, north-western Spain, were characterized, and successfully employed as economic nutritional supplements for xylitol production by Debaryomyces hansenii. All fermentations can be modelled showing kinetic patterns fairly described by the mathematical models. No negative effect of the phenolic compounds in the liquid phase on the initial volumetric rate of product formation (r(P)(0)) was observed. Multiple linear regression analysis was used to describe the effect of metals and initial xylose acting on P(max) and Y(P/S). Zn was the most influential variable. Besides, partial least-squares regression models show a clear separation, based on the first two principal components, between the whole vinasses and the liquid fractions, which provided the higher P(max), with the exception of CBO 4, where P(max)=40.4 g/L, was achieved using the solid and liquid fraction.


Assuntos
Resíduos Industriais/análise , Saccharomycetales/metabolismo , Vitis/química , Eliminação de Resíduos Líquidos , Xilitol/biossíntese , Carbono/análise , Fermentação , Geografia , Análise dos Mínimos Quadrados , Modelos Lineares , Minerais/análise , Nitrogênio/análise , Espanha , Fatores de Tempo
11.
Bioprocess Biosyst Eng ; 32(6): 747-54, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19184115

RESUMO

To develop a new enzymatic xylose-to-xylitol conversion, deeper knowledge on the regulation of xylose reductase (XR) is needed. To this purpose, a new strain of Debaryomyces hansenii (UFV-170), which proved a promising xylitol producer, was cultivated in semi-synthetic media containing different carbon sources, specifically three aldo-hexoses (D-glucose, D-galactose and D-mannose), a keto-hexose (D-fructose), a keto-pentose (D-xylose), three aldo-pentoses (D-arabinose, L-arabinose and D-ribose), three disaccharides (maltose, lactose and sucrose) and a pentitol (xylitol). The best substrate was lactose on which cell concentration reached about 20 g l(-1) dry weight (DW), while the highest specific growth rates (0.58-0.61 h(-1)) were detected on lactose, D-mannose, D-glucose and D-galactose. The highest specific activity of XR (0.24 U mg(-1)) was obtained in raw extracts of cells grown on D-xylose and harvested in the stationary growth phase. When grown on cotton husk hemicellulose hydrolyzates, cells exhibited XR activities five to seven times higher than on semi-synthetic media.


Assuntos
Aldeído Redutase/metabolismo , Debaryomyces/crescimento & desenvolvimento , Debaryomyces/metabolismo , Polissacarídeos/metabolismo , Metabolismo dos Carboidratos , Meios de Cultura , Debaryomyces/enzimologia , Fermentação , Tecnologia de Alimentos , Gossypium/química , Hidrólise , Cinética , Especificidade por Substrato , Xilitol/biossíntese , Xilose/metabolismo
12.
Bioresour Technol ; 99(3): 502-8, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17350252

RESUMO

About 270 yeast isolates were screened for xylitol production using xylose as the sole carbon source. The best isolate, Debaryomyces hansenii UFV-170, released 5.84 g L(-1) xylitol from 10 g L(-1) xylose after 24 h, corresponding to a yield of xylitol on consumed substrate (Y(P/S)) of 0.54 g g(-1). This strain was cultivated batch-wise at variable starting concentrations of xylose (S(o)) and biomass (X(o)) and agitation intensity, in order to improve xylitol production and to evaluate, through simple carbon balances, the influence of these conditions on xylose metabolism. Under the best microaerobic conditions (S(o) = 53 g L(-1), X(o) = 1.4 g L(-1), 200 rpm), xylitol production reached 37.0 g L(-1), corresponding to xylitol volumetric productivity of 1.0 g L(-1)h(-1), specific productivity of 0.22 g g(-1)h(-1) and Y(P/S) = 0.76 g g(-1). Almost 83% of xylose was consumed for xylitol production, the rest being consumed for growth, while respiration was negligible. The new isolate appeared to be a promising alternative for industrial xylitol bioproduction.


Assuntos
Saccharomycetales/isolamento & purificação , Xilitol/biossíntese , Xilose/metabolismo , Biomassa , Carbono , Especificidade por Substrato
13.
Biotechnol Lett ; 29(12): 1887-91, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17636384

RESUMO

A brewery spent-grain hemicellulosic hydrolysate was used for xylitol production by Debaryomyces hansenii. Addition of 6 g yeast extract/l increased the xylitol yield to 0.57 g/g, and productivity to 0.51 g/l h that were, respectively, 1.4 -and 1.8-times higher than the values obtained with non-supplemented hydrolysate. When corn steep liquor was combined with 3 g yeast extract/l, the highest xylitol yield, 0.58 g/g, was obtained with a similar productivity.


Assuntos
Ácidos/metabolismo , Grão Comestível/metabolismo , Resíduos Industriais , Saccharomycetales/metabolismo , Xilitol/biossíntese , Hidrólise , Polímeros , Leveduras
14.
Appl Biochem Biotechnol ; 136(2): 165-82, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17496338

RESUMO

To obtain in-depth information on the overall metabolic behavior of the new good xylitol producer Debaryomyces hansenii UFV-170, batch bioconversions were carried out using semisynthetic media with compositions simulating those of typical acidic hemicellulose hydrolysates of sugarcane bagasse. For this purpose, we used media containing glucose (4.3-6.5 g/L), xylose (60.1-92.1 g/L), or arabinose (5.9-9.2 g/L), or binary or ternary mixtures of them in either the presence or absence of typical inhibitors of acidic hydrolysates, such as furfural (1.0-5.0 g/L), hydroxymethylfurfural (0.01- 0.30 g/L), acetic acid (0.5-3.0 g/L), and vanillin (0.5-3.0 g/L). D. hansenii exhibited a good tolerance to high sugar concentrations as well as to the presence of inhibiting compounds in the fermentation media. It was able to produce xylitol only from xylose, arabitol from arabinose, and no glucitol from glucose. Arabinose metabolization was incomplete, while ethanol was mainly produced from glucose and, to a lesser less extent, from xylose and arabinose. The results suggest potential application of this strain in xyloseto- xylitol bioconversion from complex xylose media from lignocellulosic materials.


Assuntos
Ascomicetos/efeitos dos fármacos , Glucose/farmacologia , Xilitol/biossíntese , Ácido Acético/farmacologia , Arabinose/farmacologia , Ascomicetos/metabolismo , Benzaldeídos/farmacologia , Fermentação/efeitos dos fármacos , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Xilose/farmacologia
15.
Appl Biochem Biotechnol ; 129-132: 461-75, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16915662

RESUMO

The combined effects of inhibitors present in lignocellulosic hydrolysates was studied using a multivariate statistical approach. Acetic acid (0-6 g/L), formic acid (0-4.6 g/L), and hydroquinone (0-3 g/L) were tested as model inhibitors in synthetic media containing a mixture of glucose, xylose, and arabinose simulating concentrated hemicellulosic hydrolysates. Inhibitors were consumed sequentially (acetic acid, formic acid, and hydroquinone), alongside to the monosaccharides (glucose, xylose, and arabinose). Xylitol was always the main metabolic product. Additionally, glycerol, ethanol, and arabitol were also obtained. The inhibitory action of acetic acid on growth, on glucose consumption and on all product formation rates was found to be significant (p < or = 0.05), as well as formic acid inhibition on xylose consumption and biomass production. Hydroquinone negatively affected biomass productivity and yield, but it significantly increased xylose consumption and xylitol productivity. Hydroquinone interactions, either with acetic or formic acid or with both, are also statistically significant. Hydroquinone seems to partially lessen the acetic acid and amplify formic acid effects. The results clearly indicate that the interaction effects play an important role on the xylitol bioprocess.


Assuntos
Ácido Acético/administração & dosagem , Ascomicetos/fisiologia , Formiatos/administração & dosagem , Glucose/metabolismo , Hidroquinonas/administração & dosagem , Polissacarídeos/metabolismo , Xilitol/biossíntese , Ascomicetos/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Simulação por Computador , Relação Dose-Resposta a Droga , Combinação de Medicamentos , Fermentação/efeitos dos fármacos , Taxa de Depuração Metabólica/efeitos dos fármacos , Modelos Biológicos
16.
J Ind Microbiol Biotechnol ; 33(8): 646-54, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16520980

RESUMO

The effect of nutrient supplementation of brewery's spent grain (BSG) hydrolysates was evaluated with respect to biomass and xylitol production by Debaryomyces hansenii. For optimal biomass production, supplementation of full-strength BSG hydrolysates required only phosphate (0.5 g l(-1) KH(2)PO(4)), leading to a biomass yield and productivity of 0.60 g g(-1) monosaccharides and 0.55 g l(-1 )h(-1), respectively. Under the conditions studied, no metabolic products other than CO(2) and biomass were identified. For xylitol production, fourfold and sixfold concentrated hydrolysate-based media were used to assess the supplementation effects. The type of nutrient supplementation modulated the ratio of total polyols/total extracellular metabolites as well as the xylitol/arabitol ratio. While the former varied from 0.8 to 1, the xylitol/arabitol ratio reached a maximum value of 2.6 for yeast extract (YE)-supplemented hydrolysates. The increase in xylitol productivity and yield was related to the increase of the percentage of consumed xylose induced by supplementation. The best xylitol yield and productivity were found for YE supplementation corresponding to 0.55 g g(-1) and 0.36 g l(-1 )h(-1), respectively. In sixfold concentrated hydrolysates, providing that the hydrolysate was supplemented, the levels of xylitol produced were similar or higher than those for arabitol. Xylitol yield exhibited a further increase in the sixfold hydrolysate supplemented with trace elements, vitamins and minerals to 0.65 g g(-1), albeit the xylitol productivity was somewhat lower. The effect of using activated charcoal detoxification in non-supplemented versus supplemented sixfold hydrolysates was also studied. Detoxification did not improve polyols formation, suggesting that the hemicellulose-derived inhibitor levels present in concentrated BSG hydrolysates are well tolerated by D. hansenii.


Assuntos
Bebidas Alcoólicas , Meios de Cultura/química , Grão Comestível/metabolismo , Microbiologia Industrial/métodos , Xilitol/biossíntese , Leveduras/metabolismo , Elementos Químicos , Fermentação , Hidrólise , Nitrogênio , Fosfatos , Polímeros/metabolismo , Vitaminas , Leveduras/crescimento & desenvolvimento
17.
Biotechnol Prog ; 20(6): 1641-50, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15575694

RESUMO

The new yeast Debaryomyces hansenii UFV-170 was tested in this work in batch experiments under variable oxygenation conditions. To get additional information on its fermentative metabolism, a stoichiometric network was proposed and checked through a bioenergetic study performed using the experimental data of product and substrate concentrations. The yeast metabolism resulted to be practically inactive under strict oxygen-limited conditions (qO2 = 12.0 mmol(O2) C-mol(DM)(-1) h(-1)), as expected by the impossibility of regenerating NADH2+. Significant fractions of the carbon source were addressed to both respiration and biomass growth under excess oxygen levels (qO2 > or = 55.0 mmol(O2) C-mol(DM)(-1) h(-1)), thus affecting xylitol yield (Y(P/S) = 0.41-0.52 g g(-1)). Semi-aerobic conditions (qO2 = 26.8 mmol(O2) C-mol(DM)(-1) h(-1)) were able to ensure the best xylitol production performance (Pmax = 76.6 g L(-1)), minimizing the fractions of the carbon source addressed either to respiration or biomass production and increasing Y(P/S) up to 0.73 g g(-1). An average P/O ratio of about 1.0 mol(ATP) mol(O)(-1) allowed estimation of the main kinetic-bioenergetic parameters of the biosystem. The overall ATP requirements of biomass were found to be particularly high and dependent on the oxygen availability in the medium as well as on the physiological state of the culture. Under semi-aerobic and aerobic conditions, they varied in the ranges 13.5-15.4 and 9.74-10.2 mol(ATP) C-mol(DM)(-1), respectively, whereas during the best semi-aerobic bioconversion they progressively increased from 5.68 to 24.7 mol(ATP) C-mol(DM)(-1). After a starting phase of adaptation to the medium, the cell achieved a phase of decelerated growth during which its excellent xylose-to-xylitol capacity kept almost constant after 112 h up to the end of the run.


Assuntos
Técnicas de Cultura de Células/métodos , Modelos Biológicos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Reatores Biológicos/microbiologia , Simulação por Computador , Saccharomycetales/classificação , Saccharomycetales/crescimento & desenvolvimento , Especificidade da Espécie
18.
Biotechnol Prog ; 19(3): 706-13, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12790628

RESUMO

The effect of oxygenation on xylitol production by the yeast Debaryomyces hansenii has been investigated in this work using the liquors from corncob hydrolysis as the fermentation medium. The concentrations of consumed substrates (glucose, xylose, arabinose, acetate and oxygen) and formed products (xylitol, arabitol, ethanol, biomass and carbon dioxide) have been used, together with those previously obtained varying the hydrolysis technique, the level of adaptation of the microorganism, the sterilization procedure and the initial substrate and biomass concentrations, in carbon material balances to evaluate the percentages of xylose consumed by the yeast for the reduction to xylitol, alcohol fermentation, respiration and cell growth. The highest xylitol concentration (71 g/L) and volumetric productivity (1.5 g/L.h) were obtained semiaerobically using detoxified hydrolyzate produced by autohydrolysis-posthydrolysis, at starting levels of xylose (S(0)) and biomass (X(0)) of about 100 g/L and 12 g(DM)/L, respectively. No less than 80% xylose was addressed to xylitol production under these conditions. The experimental data collected in this work at variable oxygen levels allowed estimating a P/O ratio of 1.16 mol(ATP)/mol(O). The overall ATP requirements for biomass production and maintenance demonstrated to remarkably increase with X(0) and for S(0) >or= 130 g/L and to reach minimum values (1.9-2.1 mol(ATP)/C-mol(DM)) just under semiaerobic conditions favoring xylitol accumulation.


Assuntos
Trifosfato de Adenosina/metabolismo , Reatores Biológicos/microbiologia , Modelos Biológicos , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Zea mays/química , Adaptação Fisiológica/fisiologia , Carbono/metabolismo , Simulação por Computador , Metabolismo Energético/fisiologia , Transferência de Energia/fisiologia , Hidrólise , Consumo de Oxigênio/fisiologia , Extratos Vegetais/metabolismo
19.
Appl Biochem Biotechnol ; 101(1): 15-29, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12008864

RESUMO

Xylitol production by Debaryomyces hansenii NRRL Y-7426 was performed on synthetic medium varying the initial xylose concentration between 50 and 300 g/L. The experimental results of these tests were used to investigate the effect of substrate level on xylose consumption by this yeast. Satisfactory values of product yield on substrate (0.74-0.83 g/g) as well as volumetric productivity (0.481-0.694 g/L x h) were obtained over a wide range of xylose levels (90-200 g/L), while a worsening of kinetic parameters took place at higher concentration, likely due to a substrate inhibition phenomenon. The metabolic behavior of D. hansenii was studied, under these conditions, through a carbon material balance to estimate the fractions of xylose consumed by the cell for different activities (xylitol production, biomass growth, and respiration) during the lag, exponential, and stationary phases.


Assuntos
Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Biomassa , Carbono/análise , Carbono/metabolismo , Dióxido de Carbono/análise , Cromatografia Líquida de Alta Pressão , Transporte de Elétrons/fisiologia , Fermentação/fisiologia , Cinética , Saccharomycetales/crescimento & desenvolvimento , Especificidade por Substrato , Xilose/farmacologia
20.
Biotechnol Bioeng ; 75(1): 39-45, 2001 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-11536125

RESUMO

The production of xylitol from concentrated synthetic xylose solutions (S(o) = 130-135 g/L) by Debaryomyces hansenii was investigated at different pH and temperature values. At optimum starting pH (pH(o) = 5.5), T = 24 degrees C, and relatively low starting biomass levels (0.5-0.6 g(x)/L), 88% of xylose was utilized for xylitol production, the rest being preferentially fermented to ethanol (10%). Under these conditions, nearly 70% of initial carbon was recovered as xylitol, corresponding to final xylitol concentration of 91.9 g(P)/L, product yield on substrate of 0.81 g(P)/g(S), and maximum volumetric and specific productivities of 1.86 g(P)/L x h and 1.43 g(P)/g(x) x h, respectively. At higher and lower pH(o) values, respiration also became important, consuming up to 32% of xylose, while negligible amounts were utilized for cell growth (0.8-1.8%). The same approach extended to the effect of temperature on the metabolism of this yeast at pH(o) = 5.5 and higher biomass levels (1.4-3.0 g(x)/L) revealed that, at temperatures ranging from 32-37 degrees C, xylose was nearly completely consumed to produce xylitol, reaching a maximum volumetric productivity of 4.67 g(P)/L x h at 35 degrees C. Similarly, both respiration and ethanol fermentation became significant either at higher or at lower temperatures. Finally, to elucidate the kinetic mechanisms of both xylitol production and thermal inactivation of the system, the related thermodynamic parameters were estimated from the experimental data with the Arrhenius model: activation enthalpy and entropy were 57.7 kJ/mol and -0.152 kJ/mol x K for xylitol production and 187.3 kJ/mol and 0.054 kJ/mol x K for thermal inactivation, respectively.


Assuntos
Saccharomycetales/metabolismo , Xilitol/biossíntese , Xilose/metabolismo , Carbono/metabolismo , Entropia , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA